Non-abelian local invariant cycles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-abelian Local Invariant Cycles

Let f be a degeneration of Kähler manifolds. The local invariant cycle theorem states that for a smooth fiber of the degeneration, any cohomology class, invariant under the monodromy action, rises from a global cohomology class. Instead of the classical cohomology, one may consider the non-abelian cohomology. This note demonstrates that the analogous non-abelian version of the local invariant c...

متن کامل

Conformally Invariant Non-local Operators

On a conformal manifold with boundary, we construct conformally invariant local boundary conditions B for the conformally invariant power of the Laplacian k , with the property that ( k , B) is formally self-adjoint. These boundary problems are used to construct conformally invariant nonlocal operators on the boundary Σ, generalizing the conformal Dirichlet-to-Robin operator, with principal par...

متن کامل

A non - local , Lorentz - invariant ,

We demonstrate how to construct a lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. The covariant theory that we propose employs a multi-time formalism and a lorentz-invariant rule for the coordination of the space-time points on the individual particle trajectories. In this way we show that there is no contradiction between nonl...

متن کامل

On Non-abelian Lubin-tate Theory via Vanishing Cycles

We give a purely local proof, in the depth 0 case, of the result by HarrisTaylor which asserts that the local Langlands correspondence for GLn is realized in the vanishing cycle cohomology of the deformation spaces of one-dimensional formal modules of height n. Our proof is given by establishing the direct geometric link with the Deligne-Lusztig theory for GLn(Fq).

متن کامل

non-divisibility for abelian groups

Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting   all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08843-0